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Abstract

This paper proposes a novel shrinkage estimator for high-dimensional covariance ma-

trices by extending the Oracle Approximating Shrinkage (OAS) of [Chen et al., 2009]

to target the diagonal elements of the sample covariance matrix. When the diago-

nal elements of the true covariance matrix exhibit substantial variation, our method

reduces the Mean Squared Error, compared with OAS, which targets an average vari-

ance. The degree of improvement is higher when the true covariance matrix is sparser.

Our method also outperforms other estimators based on a diagonal target under the

normality assumption. We further propose an extended estimator that makes use of

two targets: the average variance target and the diagonal target. This more flexible es-

timator improves upon the single-target estimators in all the scenarios discussed. The

proposed estimators are applied to the problem of UK inflation forecast reconciliation

and minimum variance portfolio selection to compare their performance with other

benchmark methods.

1 Introduction

Estimating a covariance matrix Σ : p× p and its inverse when the dimension of the matrix p

is larger than the sample size n is central to many important econometric methods such as

∗International Monetary Fund, Sando@imf.org
†University of Cambridge, mx235@cam.ac.uk

0



GMM and PCA (See [Hansen, 1982], [Pearson, 1901]), and empirical applications, includ-

ing financial portfolio selection and macroeconomic forecasting (See [DeMiguel et al., 2009],

[Ban et al., 2018], [Ando and Kim, 2022]). Although [Ledoit and Wolf, 2004] developed a

shrinkage estimator based on an average variance target, and [Chen et al., 2009] improved

its finite sample performance under the normality assumption, the method leaves room for

improvement when the diagonal elements of the true covariance matrix exhibit substantial

variation. For example, in the setting of macroeconomic forecasting, GDP and output of,

say, the fishing industry can differ by a hundredfold, so the shrinkage estimator that tar-

gets the average variance can overestimate the variance of the fishing industry’s output and

underestimate that of GDP.

To accommodate the case where the variance of random variables exhibits substantial

variation, this paper proposes a shrinkage estimator (OASD) that targets the diagonal el-

ements of the sample covariance matrix. Our method extends the Oracle Approximating

Shrinkage estimator (OAS) of [Chen et al., 2009] that targets the average variance. Fol-

lowing [Eldar and Chernoi, 2008] and [Chen et al., 2009], we derive the optimal shrinkage

parameter given the true covariance matrix (Oracle estimator) and approximate this infea-

sible Oracle estimator with an iterative algorithm. We use a simulation to show that our

method possesses a lower Mean Squared Error (MSE) than OAS when the diagonal ele-

ments of the true covariance matrix exhibit substantial variation. In the specification of

decaying off-diagonal elements, we see that the degree of improvement is higher when the

true covariance matrix is sparser.

As in [Chen et al., 2009], our method is based on optimality under the normal distribu-

tion. Compared to [Schäfer and Strimmer, 2005], which also targets diagonal elements of

the covariance matrix but without imposing a distributional assumption, our method per-

forms better when the distribution is normal. In addition, our method inherits the desirable

property of OAS that the shrinkage parameter stays between 0 and 1. Thus, the estimated

covariance matrix is positive definite, even without manually restricting the shrinkage pa-

rameter, as done in [Schäfer and Strimmer, 2005]. The normality assumption also allows us

to derive the optimal shrinkage parameter in a closed form, which involves less computation

than the nonlinear shrinkage method of [Ledoit and Wolf, 2012].

However, our proposed estimator OASD does not outperform existing methods in all

circumstances and should therefore be considered a complement to them. For example,

when the variation in the diagonal elements of the true covariance matrix is small, the OAS

tends to generate a lower MSE. This observation also suggests an alternative method to
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estimate the covariance matrix by applying OAS to the correlation matrix and scaling it

back by multiplying sample variances. To examine robustness, we perform a simulation and

show that the difference in MSE between OAS and our proposed method is small, and that

directly shrinking the sample covariance matrix performs better than applying OAS to the

correlation matrix and scaling it back.

OASD is designed for the case where diagonal elements exhibit large variation, while

OAS performs better when diagonal variation is small. To have an estimator that works

best in both cases, we further extend the method and propose OASB, which allows for two

targets: the average variance target used in OAS and the diagonal target in OASD. The

shrinkage weights for the two targets are chosen in a data-driven manner, adjusting according

to features of the sample covariance matrix. Having two parameters instead of one allows us

to choose different levels of shrinkage for diagonal and off-diagonal entries. This explains its

better performance over OAS (which forces the shrinkage level to be the same for diagonal

and off-diagonal entries) and OASD (which keeps the sample variances and only shrinks the

off-diagonal entries).

Our two empirical applications: forecast reconciliation and portfolio construction, con-

firms the lessons we learned in the simulation. When the covariance matrix is dense and

variables have less dispersion in variation, OAS and LW perform better than OASD, as in

the forecast reconciliation results. However, when the variables are less correlated or when

they differ greatly in scales, as in our portfolio construction example, OASD performs sig-

nificantly better. OASB tend to have its performance between the two groups of estimators

and is ideal for researchers who are unsure about the patterns of the true covariance matrix.

This paper is organized as follows. Section 2 gives an overview of the literature in this

area, Section 3 describes the theoretical framework, Section 4 uses simulations to assess per-

formance and evaluate robustness, Section 5 gives the empirical application of UK inflation

forecast reconciliation, Section 6 and Section 7 concludes.

2 Literature Review

The literature on the linear shrinkage of covariance matrices begins with [Stein, 1975], who

first demonstrated that shrinking the eigenvalues of the sample covariance matrix could

improve its estimation. This insight inspired the empirical Bayes estimator by [Haff, 1980]

and the minimax estimator of [Dey and Srinivasan, 1985].
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Although these estimators are predicated on normality, their performance with Gaussian

samples still lags behind [Ledoit and Wolf, 2003]’s LW estimator, as shown through simu-

lations in [Ledoit and Wolf, 2003]. The LW estimator performs a linear combination of the

sample covariance matrix S and the identity matrix, effectively shrinking the sample eigen-

values toward their grand mean while keeping the sample eigenvectors intact. Remarkably,

the optimality of LW was established without any specific distributional assumptions. This

has led to the widespread use of methods based on LW , particularly in portfolio selection (see

[DeMiguel et al., 2009] or [Ban et al., 2018]). However, while [Ledoit and Wolf, 2003] pro-

vides a consistent estimator of the optimal combination weight under general asymptotics,

its finite-sample efficacy remains uncertain.

[Chen et al., 2009] proposed two improvements to LW , assuming normality: RBLW and

OAS. Our simulations show that RBLW does not significantly improve upon LW (which

aligns with the findings of [Chen et al., 2009]), whereas OAS outperforms both LW -based

methods for Gaussian samples. This is primarily due to the iterative method used in OAS,

which achieves a more accurate finite-sample approximation of the optimal combination

weight.

[Schäfer and Strimmer, 2005] also followed the linear shrinkage strategy but focused on

achieving better finite-sample performance and expanding the list of target matrices. In

contrast to the iterative approach of [Chen et al., 2009], they replaced components of the

optimal weight, which depend on the true covariance matrix, with unbiased estimators as

an approximation. Their main proposed estimator, SS, uses the target diag(S) as a com-

promise between the constant variance target of [Ledoit and Wolf, 2003] and the constant

correlation target of [Elton and Gruber, 1973]. Besides its application to gene association

networks, this method has gained popularity in forecast reconciliation literature. For in-

stance, [Wickramasuriya et al., 2019]’s MinT method used SS to estimate the base forecast

error covariance matrix, and it has since been adopted in other probabilistic forecast reconcil-

iation studies [Panagiotelis et al., 2023]. Despite its popularity, the estimator’s distribution-

free property comes with a cost. As it is a ratio of unbiased components, the resulting

estimator remains biased and inconsistent. Our simulations show that this estimator per-

forms well only under highly sparse settings. Moreover, manual clipping of the estimated

weights between 0 and 1 is necessary to ensure the estimated covariance matrix is invertible,

which further distorts its finite-sample performance.

In recent years, new methods have been developed for high-dimensional covariance ma-

trix estimation, including the factor model approach by [Fan et al., 2008] and the non-linear
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shrinkage method by [Ledoit and Wolf, 2012]. The former assumes a factor structure rather

than sparsity in the true covariance matrix. The latter asymptotically bias-corrects the sam-

ple eigenvalues using the [Marchenko and Pastur, 1967] equation while keeping the sample

eigenvectors intact. However, [Ledoit and Wolf, 2012] have shown that when p
n
is large or the

dispersion of eigenvalues is small, the non-linear shrinkage estimator does not significantly

outperform LW . Our own verification supports this finding.

This paper builds on the linear shrinkage literature, particularly in empirical situations

where using a diagonal target seems appropriate (e.g., when variables have vastly different

variances) and when p≫ n. Through simulation studies, we demonstrate that our proposed

estimator, OASD, performs best among competing estimators when the population covari-

ance matrix exhibits considerable variation. Moreover, our extended estimator, OASB,

performs the best across all simulation scenarios.

3 Theoretical Framework

Suppose that the data {xi}ni=1 are i.i.d. and has p ≥ 2 dimensions. In a high-dimensional

environment p > n, the sample covariance matrix

S =
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)T , x̄ =
1

n

n∑
i=1

xi (1)

is degenerate and is a poor estimate of the true covariance matrix Σ. Throughout the pa-

per, we assume that the diagonal elements of the sample covariance matrices are positive

Smm > 0 for all m = 1, ..., p and the true covariance matrix is positive definite Σ > 0.

One way to address the issue is to use a linear shrinkage estimator of the covariance

matrix

Ŝ (ρ) = (1− ρ)S + ρT, (2)

where T is called a target matrix. We use the diagonal elements of the sample covariance

matrix S as the target T = diag (S), while the OAS targets the average mean T = tr(S)
p
I. In

either case, as long as the target matrix T is positive definite and the shrinkage parameter

resides in ρ ∈ (0, 1], the estimated covariance matrix Ŝ (ρ) is positive definite even when the
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sample covariance matrix S is degenerate

a′Ŝ (ρ) a = (1− ρ) a′Sa︸︷︷︸
≥0

+ρ a′Ta︸︷︷︸
>0

> 0, ∀a ̸= 0, ρ ∈ (0, 1] . (3)

When the true covariance matrix Σ = V (xi) is known, the shrinkage parameter ρ can be

pinned down by minimizing the MSE from the true covariance matrix

ρOD (Σ) = argmin
ρ∈R

E

[∥∥∥Ŝ (ρ)− Σ
∥∥∥2] , ∥A∥2 := tr(ATA) =

∑
i,j

A2
i,j, (4)

where the resulting shrinkage parameter ρOD is called an Oracle shrinkage estimator with a

diagonal target. The problem (4) is quadratic in ρ, and thus has the following closed-form

solution.

Theorem 1 Suppose S is the unbiased sample covariance matrix (1) and T is a symmetric

target matrix. The optimal shrinkage parameter that solves (4) is

ρOD(Σ, T ) =
E [tr(Σ− S)(T − S)]

E
[
∥T − S∥2

] . (5)

If, in addition, xi follows a joint normal distribution N(µ,Σ), and the target matrix is the

diagonal elements of the covariance matrix T = diag(S), (5) can be written as

ρOD (Σ) =
tr(Σ2)− 2tr(diag(Σ)2) + tr(Σ)2

ntr(Σ2)− (n+ 1)tr(diag(Σ)2) + tr(Σ)2
. (6)

Proof. See Appendix 7.1.

The oracle shrinkage parameter of (6) is optimal but infeasible, since it is based on the

true covariance matrix Σ. To approximate (6), our proposed method, which we call Oracle

Approximating Shrinkage with Diagonal target (OASD), uses the limit of the following

iteration indexed by j

Σj = (1− ρj)S + ρjdiag(S), (7)

ρj+1 =
tr(ΣjS)− 2tr(diag(Σj)

2) + tr(Σj)
2

ntr(ΣjS)− (n+ 1)tr(diag(Σj)2) + tr(Σj)2
. (8)

Note that (8) replaces the true covariance matrix Σ in (6) by the sample covariance matrix

S except for the squared terms Σ2, in which case only one of them is replaced by the sample

covariance matrix ΣjS. In this way, the system remains tractable since ρ2j does not show up.
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The following main theorem shows that the iteration converges to a unique limit for any

initial value ρ0 ∈ (0, 1).

Theorem 2 For any initial value ρ0 ∈ (0, 1), the sequence {ρj}j specified by (7) and (8)

converges to

ρOASD = min

{
1

nϕ
, 1

}
, ϕ =

tr(S2)− tr(diag(S)2)

tr(S2) + tr(S)2 − 2tr(diag(S)2)
∈ [0, 1). (9)

The shrinkage parameter satisfies ρOASD ∈ (0, 1], and thus, the covariance estimator SOASD =

Ŝ(ρOASD) is positive definite.

Proof. See Appendix 7.2

3.1 Special Case: Known Mean

This section provides the formula for the special case where the mean is known to be

zero µ = 0. This specification has been used in the literature ([Ledoit and Wolf, 2004],

[Chen et al., 2009], and [Schäfer and Strimmer, 2005]), and thus allows us to compare the

performance of different methods, although it is less useful in practice than the general setup

with unknown mean.

It turns out that the resulting formula replaces n in (6) and (9) by n+ 1.

Theorem 3 Suppose xi ∼ N(0,Σ) is i.i.d., and the sample covariance matrix (1) is replaced

by

S =
1

n

n∑
i=1

xix
T
i . (10)

Then, the Oracle and OASD shrinkage estimators (6) and (9) are replaced by

ρOD(Σ) =
tr(Σ2)− 2tr(diag(Σ)2) + tr(Σ)2

(n+ 1)tr(Σ2)− (n+ 2)tr(diag(Σ)2) + tr(Σ)2
, (11)

ρOASD = min

{
1

(n+ 1)ϕ
, 1

}
, ϕ =

tr(S2)− tr(diag(S)2)

tr(S2) + tr(S)2 − 2tr(diag(S)2)
∈ [0, 1). (12)

The shrinkage parameter satisfies ρOASD ∈ (0, 1], so the covariance estimator SOASD =

Ŝ(ρOASD) is positive definite.
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Proof. See Appendix 7.3

As in Theorem 2, the shrinkage parameter ρOASD contains min operator, but this is a

result of the convergence and is not manually imposed.

3.2 Extension: Two Targets

Instead of manually selecting either to use the diagonal target as in OASD or the average

variance target as in OAS, we propose the updated shrinkage estimator

S̃ (θ, α) = (1− θ)S + θ (αTOASD + (1− α)TOAS) . (13)

where TOASD = diag(S) and TOAS = tr(S)
p
I. Similar to (4), the shrinkage parameters θ and

α can be found by minimizing the MSE from the true covariance matrix

θOB (Σ) , αOB (Σ) = argmin
ρ∈R

E

[∥∥∥S̃ (θ, α)− Σ
∥∥∥2] . (14)

where the resulting θOB and αOB are called the Oracle shrinkage estimators with two targets.

This problem (14) is again quadratic in both parameters and we can get the following closed-

form solution.

Theorem 4 Suppose that xi is i.i.d. and follows a joint normal distribution N(µ,Σ). S is

the sample covariance matrix (1). TOASD = diag(S) a diagonal matrix that shares the same

diagonal elements as S and TOAS = tr(S)
p
I is a diagonal matrix with each element equal to

the averaged sample variances. The optimal shrinkage parameters that solves (14) is

θOB(Σ) =
tr(Σ)2 + tr(Σ2)− 2tr(diag(Σ)2)

ntr(Σ2) + tr(Σ)2 − (n+ 1)tr(diag(Σ)2)
, (15)

αOB(Σ) = 1− 1

θOB

2ptr(diag(Σ)2)− 2tr(Σ2)

p(n+ 1)tr(diag(Σ)2)− 2tr(Σ2)− (n− 1)tr(Σ)2
. (16)

Proof. See Appendix 7.4. This oracle estimator is again infeasible, as it depends on the

true covariance matrix Σ. A convenient feature of the above theorem is that θOB coincides

with ρO and therefore we can use ρOASD as an estimator for θOB. For αOB, we can adopt

the oracle approximating strategy used in Theorem 2 and estimate αOB using the limit of
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the following iteration indexed by j (using θOASB in place of θ)

Σj = (1− θOASB)S + θOASB(αjTOASD + (1− αj)TOAS), (17)

αj+1 = 1− 1

θOASB

2ptr(diag(Σj)diag(S))− 2tr(ΣjS)

p(n+ 1)tr(diag(Σj)diag(S))− 2tr(ΣjS)− (n− 1)tr(Σj)2
. (18)

The following theorem shows that the above iteration converges to a unique limit regardless

of the initial value α.

Theorem 5 For any initial value α0 , the sequence {αj}j, specified by (17) and (18) con-

verges to

αOASB =


θOASB − 1

θOASB

, if

∣∣∣∣ τ3
(τ1 + τ2)θOASB + 1− τ1

∣∣∣∣ < 1

θOASB(τ3 − τ2)− 1

θOASB(τ1 + τ3)
, if

∣∣∣∣ τ3
(τ1 + τ2)θOASB + 1− τ1

∣∣∣∣ ≥ 1,

(19)

where we use the following

θOASB = min

{
1

nϕ
, 1

}
, ϕ =

tr(S2)− tr(diag(S)2)

tr(S2) + tr(S)2 − 2tr(diag(S)2)
, (20)

τ1 =
(p− 1)

[
tr(diag(S)2)− tr(S)2

p

]
ptr(diag(S)2)− tr(S2)

, (21)

τ2 =
tr(S2)− tr(diag(S)2)− (p− 1)

[
tr(diag(S)2)− tr(S)2

p

]
ptr(diag(S)2)− tr(S2)

, (22)

τ3 =
(n− 1)p

[
tr(diag(S)2)− tr(S)2

p

]
2(ptr(diag(S)2)− tr(S2))

. (23)

The shrinkage parameters now satisfy θOASB ∈ (0, 1] and αOASB ∈ [1 − 1
θOASB

, 1), and we

can establish that the covariance estimator SOASB = S̃ (θOASB, αOASB) is positive definite.

Proof. See Appendix 7.5.

3.2.1 Special Case: Two Targets with Known Mean

Theorem 6 Suppose that xi is i.i.d. and follows a joint normal distribution N(0,Σ). S

is now replaced by the sample covariance matrix assuming known mean(10). The oracle
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shrinkage parameters in 16 can now be replaced by

θOB(Σ) =
tr(Σ)2 + tr(Σ2)− 2tr(diag(Σ)2)

(n+ 1)tr(Σ2) + tr(Σ)2 − (n+ 2)tr(diag(Σ)2)
, (24)

αOB(Σ) = 1− 1

θOB

2ptr(diag(Σ)2)− 2tr(Σ2)

p(n+ 2)tr(diag(Σ)2)− 2tr(Σ2)− ntr(Σ)2
. (25)

The approximating OASB shrinkage estimators are specified as

θOASB = min

{
1

(n+ 1)ϕ
, 1

}
, ϕ =

tr(S2)− tr(diag(S)2)

tr(S2) + tr(S)2 − 2tr(diag(S)2)
, (26)

αOASB =


θOASB − 1

θOASB

, if

∣∣∣∣ τ3
(τ1 + τ2)θOASB + 1− τ1

∣∣∣∣ < 1

θOASB(τ3 − τ2)− 1

θOASB(τ1 + τ3)
, if

∣∣∣∣ τ3
(τ1 + τ2)θOASB + 1− τ1

∣∣∣∣ ≥ 1,

(27)

where τ1 and τ2 are as specified in 21 and 22 and τ3 is defined as follows

τ3 =
np
[
tr(diag(S)2)− tr(S)2

p

]
2(ptr(diag(S)2)− tr(S2))

. (28)

The shrinkage parameters now satisfy θOASB ∈ (0, 1] and αOASB ∈ [1 − 1
θOASB

, 1), and we

can establish that the covariance estimator SOASB = S̃ (θOASB, αOASB) is positive definite.

Proof. See Appendix 7.6.

4 Simulation

This section uses simulations to assess the performance of SOASD and SOASB in a high-

dimensional environment with large variation in the diagonal elements of the true covariance

matrix Σ. Simulations consider different degrees of variation and sparsity of the true correla-

tion matrix, as well as different sample sizes. The SOASD and SOASB both perform reasonably

well with SOASB having a small advantage over SOASD in these settings.
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4.1 Setting

To conduct simulations in a high-dimensional environment, we fix the dimension of the

matrices by p = 100 and let the sample size n vary from 6 to 30. The true covariance matrix

Σ is created from a correlation matrix Γ with a decaying off-diagonal elements Γkl = γ|k−l|,

where γ controls the sparsity and varies from 0 to .9.1 Up to here, the high-dimensional

simulation environment resembles the one in [Chen et al., 2009].

To generate the variation across the diagonal elements of the true covariance matrix Σ,

we assume half of variables have a different unit,

Σ = ΛΓΛ, Λ = ΛT =



1 0
. . .

1

sd
. . .

0 sd


, (29)

where the parameter sd varies from 1 to 20. Large variations of scales are often of interest in

applications, including macroeconomic forecasting. For example, GDP can be a summation

of small industries’ value added. The government’s tax revenue can be a sum of small

municipalities. In these cases, the units of variables can differ by hundreds of times.

We generate {xi}ni=1 from a normal distribution N(0,Σ) and repeat the sampling B =

1000 times. The performance criterion is the percentage relative improvement in average

loss (PRIAL), defined as

PRIAL(Ŝ) =

1−

∑B
b=1

∥∥∥Ŝ(b) − Σ
∥∥∥2∑B

b=1 ∥S(b) − Σ∥2

× 100, (30)

where S(b) and Ŝ(b) denote the sample and estimated covariance matrices at the bth sampling.

PRIAL can be considered a measure of improvement of Ŝ relative to the sample covariance

matrix S.

To assess the performance of SOASD and SOASB, we compare them under the known mean

assumption, as derived in (3 and 6), with three methods in the literature, most of which

1We set Γkl = 1 when γ = 0 and k = l.
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also assume the known mean in their derivations 2. First, we denote by LW the estimator

proposed by [Ledoit and Wolf, 2004]

SLW = (1− ρLW )S + ρLW
tr(S)

p
I, ρLW = min


∑n

i=1

∥∥xixTi − S
∥∥2

n2
[
tr(S2)− tr(S)2

p

] , 1
 . (31)

Second, we denote by OAS and RBLW the estimators proposed by [Chen et al., 2009]3

SOAS = (1− ρOAS)S + ρOAS
tr(S)

p
I, ρOAS = min


(
1− 2

p

)
tr(S2) + tr(S)2(

n+ 1− 2
p

) [
tr(S2)− tr(S)2

p

] , 1
 .

(32)

SRBLW = (1− ρRBLW )S + ρRBLW
tr(S)

p
I, ρLW = min

{
n−2
n
tr(S2) + tr(S)2

(n+ 2)[tr(S2)− tr(S)2

p
]
, 1

}
. (33)

Third, we denote by SS the estimator proposed by [Schäfer and Strimmer, 2005]

SSS = (1− ρSS)S + ρSSdiag(S), ρSS = min

{∑
m̸=k V̂ ar(rmk)∑

m̸=k r
2
mk

, 1

}
, (34)

where rmk is the (m, k) element of the sample correlation matrix and V̂ ar(rmk) is the sample

variance estimator of rij. The min operator appears as a natural consequence of the proof

for OAS but is manually imposed for LW and SS. Finally, we also compare SOASD and

SOASB with their respective Oracle estimators SOD = Ŝ(ρOD) and SOB = S̃ (θOASB, αOASB)

.

In summary, we compare 8 estimators, {SOASD, SOD, SOASB, SOB, SLW , SRBLW , SOAS, SSS},
varying the three parameters {n, sd, γ} that control the sample size, the scale differences of

the variances, and the sparsity of the true correlation matrix Γ. For exposition, we move

each parameter one by one, fixing others at their medians.

4.2 Simulation results

The following subsections demonstrate that, compared to other methods, SOASB and SOASD

exhibit a higher PRIAL and that both the shrinkage parameters αOASB and ρOASD tracks

2with the exception of SS, which we derived their known mean version and used it in the comparison
3The formula for OAS is a modified version of equation (23) of [Chen et al., 2009], which has a typo in

the numerator.
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the infeasible Oracle estimator ρOB and ρOD close in all three dimensions {n, sd, γ}. Note

that because θOASB = ρOASD, we only included αOASB (denoted as OASB) in the plot for

the shrinkage parameters.

4.2.1 Variation of scales

Figure 1 shows the PRIAL on the left and average shrinkage parameters on the right for

each method over the variation of scales sd.

For most regions of the variation parameter sd except for areas with small sd, the OASB

and OASD exhibit higher PRIAL than the average variance methods LW , RBLW and

OAS. This is not surprising since the larger the variation of scales, the closer the diagonal

target is to the true covariance matrix compared with the average variance target. Inter-

estingly, when the variation of scales sd is small, the shrinkage parameter is similar to the

average variance methods.

OASD also shows a higher PRIAL than SS by around 1%. The improvement can be

attributed to the better approximation to the oracle weight ρOD, as can be seen in the right

chart of Figure 1. The shrinkage parameter ρSS remains constant since its formula only

contains the elements of the correlation matrix, which is constant over sd.

OASB is the best among all methods and improves on OASD by around 1%. The

improvement comes from the use of the additional average variance target. As can be seen

on the right chart of Figure 1, the weight on the diagonal target is negative when sd is close

to 1 but increases to 0.75 when sd is 3, demonstrating the necessity of having a diagonal

target when the variation of diagonal elements is large.

All methods exhibit a lower PRIAL as the variation of scales increases. This is because

the off-diagonal elements of the true covariance matrix Σ are larger, and therefore the ap-

proximation of the target matrices with null off-diagonals becomes poorer. Accordingly, the

shrinkage parameter decreases. This is also the case when the sparsity decreases, as the next

section shows.

4.2.2 Sparsity of Correlation Matrix

Figure 2 shows the PRIAL on the left and average shrinkage parameters on the right for

each method over the sparsity of the correlation matrix γ.
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The OASB and OASD exhibit a higher PRIAL than all other methods. The improve-

ment compared to the average variance targets, LW and OAS, can be as large as 10% when

the true covariance matrix Σ is sparser. One way to understand this comparative static is

to consider the limit case γ → 0, where the true covariance matrix Σ is diagonal. Both

OASB and OASD can shrink the off-diagonals without distorting diagonal elements, but

LW and OAS face the trade-off of shrinking off-diagonals and distorting diagonal elements.

When the true covariance matrix Σ becomes denser, the difference is smaller since most

improvement comes from off-diagonals, so the difference in the target matrices matters less.

The OASD also performs better than SS by up to 6%. The difference in PRIAL is

similar when the true covariance matrix Σ is sparse, but the difference increases as the

sparsity decreases. This can be attributed to the better approximation of the shrinkage

parameter ρOASD to the oracle weight ρOD compared to ρDD, as can be seen in the right

chart of Figure 2.

OASB has up to 1% improvement over OASD in this experiment4. The difference

between the two can be explained by the decrease of αOASB as γ increases. From the right

chart for shrinkage parameters, we can see that the reduction in αOASB is more slowly than

that of θOASB. This means the as we shrink the off-diagonal elements less, we also shrink the

diagonal terms less, albeit at a slower rate. This is due to a combination of less shrinkage

needed as the true covariance is denser, and the increased estimation burden with a limited

sample size.

4.2.3 Sample Size

Figure 3 shows the PRIAL on the left and average shrinkage parameters on the right for

each method over the sample size n.

When we increase n while fixing p at 100, we find from Figure 3 that all methods show a

decreasing PRIAL. This is because the sample variance is converging to the true covariance

matrix and dampening the additional benefits from shrinkage methods.

OASB andOASD perform best over all sample size n. On average, the PRIAL ofOASD

is 5% higher than LW and OAS. The difference increases as the sample size n increases. This

is because as sample size increases, we can afford to estimate more parameters accurately

and thus a diagonal target would be closer to the true covariance matrix than an average

4This isn’t very noticeable in the chart due to the scale of the y axis
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Figure 1: PRIAL and shrinkage parameters with different variation of scales sd

*Note the above results are generated under p = 100, n = 18, γ = 0.5

Figure 2: PRIAL and shrinkage parameters with different correlation sparsity γ

*Note the above results are generated under p = 100, n = 18, sd = 10
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variance target.

Compared with SS, the PRIAL of OASD is on average 2 percent higher and the dif-

ference also widens as n increases. This can be explained by the worsened approximation of

SS to the oracle weight, as can be seen in the right chart of Figure 3 while OASD tracks

the oracle weight ρOD closer for all sample sizes.

OASB is better than OASD, with larger difference at small sample sizes. This is a result

of the flexibility of shrink the diagonal terms as well as the off-diagonal terms when sample

size is small. As n increases, the weight on the diagonal target increases as can be seen from

the right chart of Figure 3, and the additional advantage of OASB over OASD decreases.

Figure 3: PRIAL and shrinkage parameters with different sample sizes

*Note the above results are generated under p = 100, sd = 10, γ = 0.5

4.2.4 Scenario for the better performance of the average variance target

OASD works better than estimators using an average variance target under the above dis-

cussed scenarios. However, it is expected that when the variation of scales is small and

the true correlation matrix is sparse, there’s no trade-off between shrinking diagonal and

off-diagonal elements and therefore the latter group of estimators should perform better. It

can be seen from Figure 4 that this is indeed the case. Under this scenario, our OASB
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resembles the performance of OAS, both of which are similar to LW -based methods when

n is large. OASB’s PRIAL is higher than that of OASD by 2% for all sample sizes. The

shrinkage parameters plot shows that the parameters of OASB rightly chose to put almost

all weight on the average variance target.

Figure 4: PRIAL and shrinkage parameters with different sample sizes (for small variation
in scale and large correlation sparsity)

*Note the above results are generated under p = 100, sd = 1, γ = 0.2

4.3 Validity of the iterative approach

In Figure 5, we demonstrate that our derived analytical limit is indeed the converging limit

when we keep iterating the optimal value for ρ̂j following the updating rule defined in Equa-

tion 8. The blue lines represent the RMSE of ρ̂j at a round of iteration j, under different

parameter settings, with darker color representing its value after more iterations. The red

line represents the derived ρ̂oasv under different parameter settings. We can notice that the

convergence happen rather quickly, with around 10 iterations we already get pretty close to

the limiting value. This can serve as motivations for extending the iterative appraoch to

other useful shrinking targets without the need to derive their analytical limits.
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4.4 Eigenvalues of OASD

It’s beneficial to reduce the dispersion of the sample eigenvalues for the following three rea-

sons. First, the sample covariance matrix when p > n is non-invertible and has λmin(S) = 0.

This is problematic, as its inverse is intractable. Therefore, we would like to increase the mini-

mum eigenvalue in our combined estimator. Moreover, as demonstrated in [Ledoit and Wolf, 2004]

Lemma 2.1, the eigenvalues of the sample covariance matrix suffer from overdispersion due

to the following decomposition:

E
[
||S − µ||2F

]
= E

[
||S − Σ||2F

]
+ ||Σ− µI||2F ,

where µ = tr(Σ)
p

. This leads to:

E
[
Σp

i=1(λi(S)− µ)2
]
= E

[
∥S − Σ∥2F

]
+ Σp

i=1(λi(Σ)− µ)2.

Thus to reducing the dispersion of sample eigenvalues allows us to better approximate the

true eigenvalues. Lastly, it is known that if a matrix is better conditioned (ie λmax

λmin
is smaller),

inverting the estimated sample covariance matrix will lead to less estimation error for the

precision matrix (Σ−1). The following comment proves that our combined estimator reduces

the range of eigenvalues compared with sample covariance matrix and, therefore, is invertible,

offers better approximation to population eigenvalues, and is better conditioned.

Comment 1

For any estimator Sc in the form of (1− ρ)S + ρdiag(S), where ρ ∈ (0, 1]. This estimator Sc

has the following property under mild conditions:

λmin(S) < λmin(Sc) < λmax(Sc) < λmax(S)

By shrinking the sample covariance target towards diag(S), we effectively make it invertible,

better conditioned, and potentially closer to the true eigenvalues now that they are less

dispersed. Unlike shrinking all eigenvalues towards their grand mean as achieved by a target

of tr(S)
p

in [Ledoit and Wolf, 2003], our level of shrinkage is milder and would be useful for

scenarios where we expect a lot of variation in true eigenvalues (for example, the case of

different units of measurement)5.

5This level of shrinkage isn’t generally achievable by varying the shrinkage coefficient in
[Ledoit and Wolf, 2003] as their linear shrinkage estimator assumes common shrinkage for all sample eigen-
values
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4.5 Inverse of the covariance estimators

In this section, we compare the performances of the inverse of each covariance estimator in

estimating the inverse of the true covariance matrix. This is relevant as most empirial analysis

directly uses inverse of the covariance matrix (precision matrix) estimator rather than the

covariance matrix itself. Our benchmark is the widely-adopted Moore-Penrose Inverse and

therefore to faciliate comparison, we define our metric PRIALINV as the percentage relative

improvement in average loss against the MSE of the Moore-Penrose Inverse ΦMP .

PRIALINV (Ŝ) =

1−

∑B
b=1

∥∥∥Ŝ(b)−1 − Σ−1
∥∥∥2∑B

b=1

∥∥∥Φ(b)
MP − Σ−1

∥∥∥2
× 100, (35)

Repeating the three sets of experiment above, we can see that OASB and OASD improve

the estimation error of the inverse of the covariance matrix the most.

Figure 6 shows that the inverse of OASD tends to perform better than other methods.

Intuitively, suppose that the true covariance matrix Σ is a 2× 2 diagonal matrix with 1 and

10 on the diagonal. The inverse Σ−1 has 1 and .1 on the diagonal. If the sample covariance

matrix S is close to the true covariance matrix Σ, the inverse of the diagonal target diag(S)−1

is also close to the inverse of the true matrix Σ−1. The inverse of the average variance target

[ tr(S)
2
I]−1, however, has 1/5.5 ≈ 0.2 on the diagonal, which is close to .1 but not to 1. This

may also be related to the observation in the previous section that OASD is well-conditioned.

4.5.1 Alternative methods based on shrinking correlation matrix

One notable problem with using an average variance target is the neglience of different

variable scales. This motivates scaling the variables first, or equivalently applying shrinkage

only to the correlation matrix before multiplying back the sample variances. This is expected

to have finite-sample problems because unless the sample variances are highly accurate,

approximating the true covariances with sample variances does not give the same optimal

weight as approximating the true correlation with sample correlation. This optimality of

directly minimizing the distance to the true covariance matrix is shown in Figure 7. OASB

is still the best and approximates OD well in all 3 dimensions. The general patterns when

compared with other methods are similar to those discussed in the previous section. However,

the adjustments in scaling make the methods using an average-variance target perform closer

to those using a diagonal target.
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Figure 5: Iterated MSE of ρ̂j and convergence to the MSE of ρOASD

*Note the above results are generated by varying one dimension and keeping the other two dimensions at
their median. The red line shows MSE of ρ̂oasv

Figure 6: PRIALINV of all methods along each dimension
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5 Application 1: Inflation nowcasting using forecast

reconciliation

Inflation nowcasting is crucial for the everyday decision-making processes of policymakers,

market practitioners, and consumers. Central banks aim for price stability, requiring them to

monitor short-term inflation movements for more effective monetary policy decisions. Market

participants and consumers also frequently adjust their investment and consumption plans

based on up-to-date inflation rates and their expectations. This is particularly relevant in

periods of economic volatility, where prices may change rapidly.

The all-items inflation rate is the headline metric widely followed by markets. Its sub-

components, however, are equally important, guiding business decisions in specific indus-

tries—such as housing, energy, and food—while offering policymakers insights into potential

distributional effects and the development of targeted policy initiatives.

Macroeconomic institutions are tasked with releasing forecasts for these variables, work-

ing toward two main objectives. Firstly, they aim to ensure that the forecasts for each

variable are as accurate as possible, using appropriate models and predictors. Secondly,

they seek to maintain consistency between the forecasts, ensuring coherence among various

sub-components and the aggregate inflation rate, as well as between variables at different

frequencies. Achieving this balance is essential for presenting a coherent and accurate picture

of inflationary trends to policymakers, investors, and the public.

To meet both objectives, we adopt a two-step forecasting procedure. In the first step,

a forecast model and set of predictors are chosen for each variable based on historical

performance. In the second step, a cross-temporal forecast reconciliation method from

[Di Fonzo and Girolimetto, 2023] is adopted to ensure that the forecasts are coherent across

components and frequencies. This method minimizes information loss during the aggrega-

tion or disaggregation of forecasts for reconciliation purposes, allowing each variable to be

forecasted independently and reconciled at the end.

Beyond satisfying practical constraints, this approach has the added benefit of lever-

aging the information extracted from one variable to improve the forecast performance

of another during reconciliation. Previous literature has shown that predictive models

for disaggregated series capture data heterogeneity and pick up different dynamics in sea-

sonality and short-term changes [Bermingham and D’Agostino, 2014], [Espasa et al., 2002],

[Boaretto and Medeiros, 2023], [Capistrán et al., 2010], and [Ibarra, 2012]. Time series data
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for variables with higher frequencies are also much longer than those of lower-frequency ag-

gregated variables, leading to better forecast model estimation. Therefore, disaggregated

series can potentially improve forecasts of aggregated series. Information may also flow in

the opposite direction: aggregated series, such as the all-items inflation rate, respond to

broader economic trends and tend to be less noisy than their sub-components. Annual in-

flation rates smooth out transitory fluctuations in monthly rates, capture lagged effects, and

incorporate slower adjustments in wage and price variables. As a result, they may show a

stronger relationship with other macroeconomic variables, as suggested by theories like the

Phillips curve.

The key parameter in implementing forecast reconciliation is the covariance matrix of base

forecast errors, which guides the decision of how much deviation from the base forecasts is

optimal. When a variable is predicted accurately with a small forecast error variance, we

tend to adjust it less and instead focus on modifying variables with larger forecast errors to

satisfy the constraints. Estimating the covariance matrix poses a challenge due to the large

number of variables and the small sample sizes. This feature renders the sample covariance

matrix unsuitable, and past literature has resorted to shrinkage methods, predominantly SS

[Panagiotelis et al., 2023], [Wickramasuriya et al., 2019], [Di Fonzo and Girolimetto, 2023].

The consensus has been to adopt a diagonal target due to the large variation in scale between

different levels of aggregation, but few alternatives for covariance estimation using a diagonal

target exist. Therefore, we propose using our proposed SOASD and SOASB estimators in this

empirical application to test their forecast MSE.

5.1 Data

5.1.1 Variables

We work with monthly UK CPI data from 1988 to 2021 from ONS. This dataset includes

the aggregated All-items CPI (00 IX) and its 12 subcomponents (their detailed definitions

are provided in 1). Our goal is to generate base and reconciled forecasts (explained later)

for future monthly and annual inflation rates of the current year, and compare their perfor-

mances with the IMF’s official World Economic Outlook (WEO) forecast for the inflation

rate. To ensure a fair comparison, we generate our forecasts based on the information IMF

economists have when they make their biannual forecasts in April and October6. Other

6For the April forecast, we use information until February, and for the October forecast, we use infor-
mation until August each year.
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than inflation-related variables, we collect conventional monthly predictor variables from

FRED, representing information from price and money supply, production and sales, em-

ployment, interest rates, exchange rates, and business and consumer confidence. It’s worth

noting that we also use two unconventional predictors of inflation rates: annual commodity

price projections estimated with futures data from the IMF (GAS) and monthly 5, 20, and

30-year breakeven inflation rates. Both measures represent implicit public opinions of price

movements. We aim to include private forecasts like these because they may account for

information that is not available to us [Faust and Wright, 2013].

5.1.2 Constraints

Due to the nature of our data (i.e., a mixture of All-items inflation and its subgroups,

as well as inflation at different time frequencies), we face cross-temporal constraints. The

temporal constraints work as expected, with annual prices being simple averages of their

monthly counterparts. However, the way ONS constructs the All-items price index from

its subgroups is not as straightforward. Because the UK consumption basket is updated

twice a year7, the weights of different subgroups of the price index must account for the

new weights and the change in the price base period used in the construction of the weights.

The final relationship between the aggregate All-items index and its components forms our

cross-sectional constraints.

Formulating these cross-temporal constraints gives the following:

Let Iy denote the All-items price index for year y and its monthly counterpart as Iy,m

for month m ∈ {1, . . . , 12}. The component weight and index are Wy,m,i and Iy,m,i for

component i ∈ I. The annual component index is denoted Iy,i.

The temporal constraints are:

Iy =
1

12

12∑
m=1

Iy,m, Iy,i =
1

12

12∑
m=1

Iy,m,i. (36)

The cross-sectional constraints are: When m = 1:

Iy,1 =
∑
i

wy,1,iIy,1,i, wy,1,i =
Iy−1,12

Iy−1,12,i

Wy,1,i∑
j Wy,1,j

. (37)

7Once in December to conform with the regulatory update of the COICOP weights, and once in January
to agree with the price reference period of RPI. See [ONS, ]
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When m ≥ 2:

Iy,m =
∑
i

wy,m,iIy,m,i, wy,m,i =
Iy,1
Iy,1,i

Wy,m,i∑
j Wy,m,j

. (38)

Since we are working with inflation rather than CPI data, we need to take care of the

transformation to growth rates in our constraints as follows (using iy and iy,m to denote the

annual and monthly All-items inflation rate, iy,i and iy,m,i to denote the annual and monthly

inflation rate for component i):

iy =
Iy − Iy−1

Iy−1

, iy,m =
Iy,m − Iy−1,m

Iy−1,m

, iy,m,i =
Iy,m,i − Iy−1,m,i

Iy−1,m,i

. (39)

Based on the constraints on the price indices, the inflation rates satisfy the following

constraints:

iy −
12∑

m=1

1

12

Iy−1,m

Iy−1

iy,m = 0, (40)

iy,i −
12∑

m=1

1

12

Iy−1,m,i

Iy−1,i

iy,m,i = 0, (41)

iy,m −
∑
i

wy,mIy−1,m,i

Iy−1,m

iy,m,i =
∑
i

Iy−1,m,i

Iy−1,m

(wy,m,i − wy−1,m,i) , (42)

where the last equation is derived from

Iy,m − Iy−1,m =
∑
i

wy,m,iIy,m,i −
∑
i

wy−1,m,iIy−1,m,i

=
∑
i

wy,m,i (Iy,m,i − Iy−1,m,i) +
∑
i

(wy,m,i − wy−1,m,i) Iy−1,m,i.

To generate forecasts that are coherent with the cross-temporal constraints discussed

above, we first generate base forecasts for each variable. These forecasts are selected from a

range of candidate forecast models and predictors using cross-validation. We then reconcile

these forecasts using an iterative approach, as suggested in [Di Fonzo and Girolimetto, 2023].

In the following sections, we discuss each step in detail.
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5.1.3 Base Forecast Methods

We have different candidate models for annual and monthly variables, primarily due to two

reasons: the length of the sample size and the availability of concurrent data. We have 34

years of annual data, and the last 5 years are used for evaluating forecast performance. This

means that our training sample size for annual data is as small as 29, which restricts the

estimation of some models. The advantage of predicting annual variables is the availability

of some higher-frequency variables for the current year, allowing us to use these already-

available aggregates as predictors.

We group our variables according to whether they are monthly or annual variables. For

monthly variables, we forecast 10 steps ahead if predicting in April (using information until

February) and 4 steps ahead if predicting in October (using information until August). For

annual variables, we forecast 1 step ahead.

In the following sections, we use πA
t = [πA 00

t , πA 01
t , . . . , πA 12

t ]T , where t ∈ [1988, 2021],

to denote annual inflation rates for all-items and its 12 sub-components. We use πM
t =

[πM 00
t , πM 01

t , . . . , πM 12
t ]T , where t ∈ [1988 m1, 2021 m12], to denote monthly all-items in-

flation rates and its sub-components for all months. To enhance clarity in the following

sections, we drop the superscripts A and M , which indicate the level of aggregation.

Random Walk (for both monthly and annual inflation rates) We use the current

inflation rate as the forecast for h steps ahead:

π̂RW
t+h|t = πt (43)

Rolling Historical Mean (for both monthly and annual inflation rates) For pre-

dictions h steps ahead, we use the historical average inflation rates from S periods ago until

the current period. S is determined by the shortest sample size at the first forecast point.

For example, for 1-step-ahead annual forecasts over the last 5 years, we take S to be 29 (the

training sample size for 2017):

π̂HM
t+h|t =

1

S

t∑
s=t−S+1

πs (44)

VAR(p) (for monthly inflation rates) We estimate h-step-ahead forecasts recursively

using a VAR(p) model, where the order p is chosen by the Bayesian Information Criterion
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(BIC). The coefficient matrix ϕl is estimated using Ordinary Least Squares (OLS):

π̂AR
t+h|t = µ̂+

p∑
l=1

ϕ̂lπ̃t+h−l (45)

where

π̃t+h−l =

{
πt+h−l, if t+ h− l ≤ t

π̂t+h−l|t, if t+ h− l > t
(46)

Augmented VAR (for monthly inflation rates) We include seasonal dummies to

account for possible seasonal effects in monthly observations. The following augmented AR

model is estimated using OLS:

π̂Aug AR
t+h|t = µ̂+

p∑
l=1

ϕ̂lπ̃t+h−l +
11∑

m=1

δ̂mdm,t+h (47)

where

π̃t+h−l =

{
πt+h−l, if t+ h− l ≤ t

π̂t+h−l|t, if t+ h− l > t
(48)

and dm,t is a seasonal dummy for month m, with δm as the associated seasonal effect coeffi-

cient.

Hybrid Philips Curve (for annual inflation rates) Following the expectation-augmented

Philips curve in [Galı and Gertler, 1999], and including the additional predictor of exchange

rates (which are important for import prices), we get the following hybrid Philips curve

forecasting model:

π̂PC
t+1|t = µ̂+ η̂πe

t+1|t + ψ̂1gt+1 (49)

where πe
t+1|t is the largest principal component of inflation expectation-related variables,

including the previous year’s inflation and available monthly breakeven inflation rates for

the current year. The variable gt+1 is the largest principal component of available monthly

GDP growth rates for the current year, and et+1 is the largest principal component of the

available monthly GBP to USD exchange rate for the current year. Principal components

are used to reduce the number of parameters in the regression, given the small sample size

for annual data.
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Dynamic Factor Model (for monthly inflation rates) We assume all monthly infla-

tion rates follow a dynamic factor model, as specified in [Bańbura and Modugno, 2014] and

[Banbura et al., 2011]:

yt = Λft + ϵt (50)

ft = A1ft−1 + · · ·+ Apft−p + ut (51)

yt = [πT
t , x

T
GAS, x

T
t ]

T (52)

where yt is a vector of standardized endogenous variables, including all inflation rates for

month t, and principal components of GAS variables that explain 90% of the variation

for this month8. Λ represents factor loadings, Ai are the AR coefficients, and ft are the

unobserved factors.

We assume a block structure for factor loadings, with 2 Global factors shared by all

variables, and 7 themed factors (e.g., rates, production, confidence, labor market, price and

money, inflation expectation) to group variables. The Global factors follow an AR(2), while

the themed factors follow an AR(1) based on our previous VAR model estimates. We assume

ut ∼ N(0, Q) and follows an AR(1). The EM algorithm is used to estimate the model, and

h-step-ahead predictions are made using the estimated parameters:

π̂DFM
t+h = [11×13 0]Λ̂f̂t+h|h (53)

Shrinkage and Machine Learning Methods (for annual inflation rates) For the

following methods, we use the same set of standardized predictor variables and estimate a

model for each component of the annual inflation rate to generate 1-step-ahead forecasts.

The predictor variables include principal components of GAS variables explaining 90% of the

variation, previous year’s averaged monthly predictors, and the available monthly predictors

for the current year. We use zt to represent all predictor variables for period t:

πit = µi + βT
i zt + ϵit (54)

Ridge We estimate the ridge coefficients as follows:

(µ̂Ridge
i , β̂Ridge

i ) = argmin
µi,βi

{
1

T

T∑
t=1

(πit − µi − βizt)
2 + λiβ

T
i βi

}
(55)

8Since GAS variables have an annual frequency, we repeat them 12 times a year to convert them into
monthly values. We also reduced the dimension of the GAS variables because many are highly correlated.
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where the regularization parameter λi is chosen using 5-fold cross-validation9. The 1-step-

ahead forecast is:

π̂Ridge
it+1 = µ̂Ridge

i + (β̂Ridge
i )T zt+1 (56)

Elastic Net (for annual inflation rates) We estimate the coefficients using the elastic

net method of [Zou and Hastie, 2005]:

(µ̂EN
i , β̂EN

i ) = argmin
µi,βi

{
1

T

T∑
t=1

(πit − µi − βizt)
2 + αl1||βi||1 + 0.5α(1− l1)||βi||22

}
(57)

where α and l1 are chosen by 5-fold cross-validation10. Elastic net retains correlated predic-

tors, which would otherwise be dropped by lasso, leading to a 1-step-ahead forecast:

π̂EN
it+1 = µ̂EN

i + (β̂EN
i )T zt+1 (58)

Adalasso (for annual inflation rates) We estimate the coefficients using the adaptive

lasso method:

(µ̂ada
i , β̂ada

i ) = argmin
µi,βi

{
1

T

T∑
t=1

(πit − µi − βizt)
2 + λi

p∑
j=1

ωj|βij|

}
(59)

where λ are chosen by 5-fold cross-validation. The Adaptive Lasso modifies the Lasso by

introducing adaptive weights for each coefficient, leading to a 1-step-ahead forecast:

π̂EN
it+1 = µ̂ada

i + (β̂ada
i )T zt+1 (60)

Random Forest and Gradient Boosting (for annual inflation rates) We also use

random forest and gradient boosting, along with the same pool of predictors. [Breiman, 2001]

developed the random forest as a method for averaging over multiple regression trees. Each

tree approximates a nonlinear function and partitions the predictor space into local regions.

9We select the candidate hyperparameter from a grid of 100 values, evenly spaced on a logarithmic scale
from 10−6 to 106.

10Candidate l1 values are selected from a grid of 10 values from 0.5 to 1, evenly spaced on a square root
scale. For each l1, α values range from a maximum defined by setting all parameters to zero, to a minimum
of 0.001 of the maximum.
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Predictions for each tree are the average value of the corresponding region:

πit+1 =
K∑
k=1

ckIk(zt+1 ∈ Rk) (61)

where Rk denotes the kth region partitioned by the algorithm, and ck is the average inflation

rate of the region. Usually, block bootstrapping on the observation dimension and random

subsets of predictors are drawn to construct trees, reducing correlations between trees. Given

the short sample size, we only randomize the subsets of features, while using the entire

sample for each tree. We choose the number of trees and maximum depth via 5-fold cross-

validation11. Final forecasts are based on averaging over the trees:

π̂RF
it+1 =

1

B

B∑
b=1

K∑
k=1

ck,bIk,b(zt+1 ∈ Rk,b) (62)

where Rk,b represents the k
th region of the bth tree. Gradient boosting, on the other hand,

extends on the regression trees in that it builds the forecasting model sequentially, eg. start-

ing with a constant estimator, and iteratively fitting a new regression tree to the residuals

of the previous forecast model. The final additive model is use to make the prediction for

the target variable

π̂GB
it+1,m = π̂GB

it+1,m−1 + vhm(zt+1) (63)

where v is the learning rate that controls the contribution of each model.

5.1.4 Cross-temporal forecast reconciliation

As we have a cross-temporal constraint structure, we use the cross-temporal forecast rec-

onciliation proposed in [Di Fonzo and Girolimetto, 2023] to reconcile both inflation rate of

various frequencies and of different categories of goods and services according to the con-

straints specified in Section 5.1.2. The main idea behind forecast reconciliation is to project

the base forecasts onto the (linear) constraint space, with the distance metrics being a func-

tion of the error covariance matrix of the base forecast errors. To be specific, our reconciled

forecast for inflation rates π̃i,t+1 is the solution of the following constrained minimization

problem:

π̃ = argmin
π

(π − π̂)TW−1(π − π̂) s.t.Cπ = 0. (64)

11Candidate values for the number of trees range from 2 to 100, and for the maximum depth, from 1 to 9
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The solution is then given by

π̃ = π̂ −WCT (CWCT )−1Cπ̂ (65)

What [Di Fonzo and Girolimetto, 2023] suggested is that we can iteratively perform this

reconciliation step cross-sectionally for different inflation categories, and temporally across

different frequencies. In our experience, it only takes around 5 iterations for the the iteration

to converge and both dimensions of constraints satisfied.

5.2 Results

The results for our forecasting exercise is shown in Figure 8 and 9. The former shows the

how many times each candidate base forecast model gets selected through cross-validation

for each forecasting period. From the stacked bar chart on the left, we can see that adalasso

seem to perform the best in predicting annual variables while other methods seem to perform

similarly. From the performance for monthly variables on the right of Figure 8, we can see

that dynamic factor model performs the best, surprisingly followed by random walk 12. In

terms of the second stage forecast presented in Figure 9, we can see that the cross-temporal

forecast reconciliation generally improved the first-stage forecast and get to similar level

as the WEO forecast for the first half of the sample. However, towards the beginning

of Covid, our data-driven forecast methods became highly inaccurate while WEO forecast

stayed accurate, leading to large difference in overall performance. From the right side plot

comparing different covariance matrix estimators, we can see that estimators using identity

target seem to work better in this case than those using diagonal target, resulting from a less

sparse covariance matrix with small variability on the diagonal. OASB in this case correctly

puts more weight on the identity target and performs well.

6 Application 2: Minimum variance portfolio

We also applied our covariance matrix estimator to the construction of a mimumim variance

portfolio. We first selected 100 most uncorrelated instruments from Bloomberg US Equity

and Fixed-income indices so that they are representative of different aspects of the mar-

ket (They still have a reasonable amount of correlation. Then we construct our minimum

12The reason April has more variables to be predicted than October is that the forecaster needs to forecast
all remaining monthly variables of the year, which is more than those in October
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variance portfolio based on the following weights x:

x(W ) =
W−11

1TW−11
= argmin

x
xTWx s.t. xT1 = 1. (66)

The weight estimated from a training sample will be used to form portfolios for several

periods’ ahead, depending on the holding period. We then compute the realized volatility of

the portfolio’s holding period return. Different covariance matrix results in different volatility

for the portfolio, and the true covariance matrix should deliver the lowest volatility. This

gives us a clean environment to test the performance of different covariance matrix estimators

by comparing the realized volatility of the portfolios constructed using weights calculated

from Equation 66. We work with monthly data and experiment with training sizes ranging

from 10 months to 40 months and holding periods of 6, 12, 24, and 60 months, which are

typical in practice.

The results for the realized standard deviation of porfolios constructed with different

covariance matrix estimators are shown in Figure 10, with Figure 11 zooming in on the best

performing estimators. The results show that OASD performs the best among all candidate

covariance matrix estimators while estimators based on an identity target performs much

worse. OASB’s performance again is between the two groups of estimators with different

targets.

7 Conclusion

This paper has proposed a novel covariance matrix estimator OASD that achieve a smaller

MSE than the existing methods when the variation in variable scales is large. It is useful, for

example, when different variables have different units. We further went on to propose OASB

that adapts the target choice depending on the patterns of the true covariance matrix and

is shown to perform better under more scenarios. A forecast reconciliation and a portfolio

construction applications were conducted to demonstrate the usefulness of the methods pro-

posed. We confirmed that OASD typically works better when the true covariance matrix

is sparser and variables exhibit higher dispersion in scales. OASB’s performance is usually

between OAS and OASD, best for when the researcher is unsure about the features of the

true covariance matrix.

We conclude by noting two caveats. First, despite the better performance in simulations,

it is important to note that our results are based on a normality assumption. Normalization
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procedures, such as the Box-Cox transformation, may need to be used if the distribution of

data deviates substantially from normality.
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Figure 7: PRIAL comparison with correlation-based methods

COICOP Symbol Description
01 IX Food and non-alcoholic beverages
02 IX Alcohol and tobacco
03 IX Clothing and footwear
04 IX Housing and household services
05 IX Furniture and household goods
06 IX Health
07 IX Transport
08 IX Communication
09 IX Recreation and culture
10 IX Education
11 IX Restaurants and hotels
12 IX Miscellaneous goods and services

Table 1: COICOP subgroups of CPI
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(a) Annual variables (b) Monthly variables

Figure 8: Model selection for different covariance matrix estimators

Figure 9: Forecast absolute error for different covariance matrix estimators
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Figure 10: Portfolio standard deviation for various covariance matrix estimators

36



Figure 11: Portfolio standard deviation for selected covariance matrix estimators
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Appendix

7.1 Proof of theorem 1

The first result can be obtained by a direct calculation. Since T is symmetric,

E
[∥∥∥Ŝ(ρ)− Σ

∥∥∥] = E
[
∥(1− ρ)S + ρT − Σ∥2

]
= E

[
∥T − S∥2

]
ρ2 + 2E [tr ({S − Σ}{T − S})] ρ+ E

[
∥S − Σ∥2

]
.

The first order condition with respect to ρ leads to

ρ =
E [tr({Σ− S}{T − S})]

E
[
∥T − S∥2

] .

The second result uses the following lemma.

When xi ∼ N(µ,Σ) is i.i.d., the following equations hold.

E [tr(Σdiag(S))] = tr
(
diag(Σ)2

)
.

E
[
tr(S2)

]
=

n

n− 1
tr(Σ2) +

1

n− 1
tr(Σ)2.

E [tr (Sdiag(S))] = E
[
tr
(
diag(S)2

)]
=
n+ 1

n− 1
tr
(
diag(Σ)2

)
.

Proof. The first equation is a direct calculation.

E [tr(Σdiag(S))] = E

[
p∑

m=1

ΣmmSmm

]
=

p∑
m=1

(Σmm)
2 = tr(diag(Σ)2).

For the second equation, let wi = xi − x̄. Since xi ∼ N(µ,Σ), the demeaned variable also

follows a joint normal distribution

wi =
n− 1

n
xi −

1

n

∑
k ̸=i

xk ∼ N(0, U), U =
n− 1

n
Σ.

Note that U is symmetric, so it can be diagonalized as U = V DV T , where V is an orthogonal

matrix and D is a diagonal matrix. Since n ≥ 2 and Σ > 0, U
1
2 := V D

1
2V T is invertible and
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can be used to transform wi into a standard normal distribution

zi := V TU− 1
2wi ∼ N(0, I).

We decompose the left hand side into two components.

E
[
tr(S2)

]
= E

tr
{ 1

n− 1

n∑
i=1

wiw
T
i

}2


=
1

(n− 1)2
E

[
tr

(
n∑

i=1

(wiw
T
i )

2 +
n∑

i=1,j ̸=i

wiw
T
i wjw

T
j

)]

=
1

(n− 1)2
E

[
n∑

i=1

(wT
i wi)

2 +
n∑

i=1,j ̸=i

(wT
i wj)

2

]
.

Let’s zoom in on the first component

E
[
(wT

i wi)
2
]
= V ar

[
wT

i wi

]
+ E

[
wT

i wi

]2
.

We can write the inner product as

wT
i wi =

(
V TU− 1

2wi

)T
D
(
V TU− 1

2wi

)
=

p∑
m=1

λmz
2
im,

where λm is the mth diagonal element of D and eigenvalue of U . Since E[z2im] = 1,

E
[
wT

i wi

]2
=

(
p∑

m=1

λmE[z
2
im]

)2

=

(
p∑

m=1

λm

)2

= tr(U)2.

For the variance, note that the normality of zim implies V ar[z2im] = E[z4im]− (E[z2im])
2 = 2,

and the joint normality zi ∼ N(0, I) implies the independence of zik and zil, which then

implies the independence of z2ik and z2il when k ̸= l.

V ar
[
wT

i wi

]
=

p∑
m=1

λ2mV ar
[
z2im
]
= 2

p∑
m=1

λ2m = 2tr(U2).

Therefore, the first component can be written as

E
[
(wT

i wi)
2
]
= 2tr(U2) + tr(U)2.
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Similarly, we can calculate the second component

E
[
(wT

i wj)
2
]
= V ar

[
wT

i wj

]
+ E

[
wT

i wj

]2
,

using the transformation

wT
i wj = (V TU− 1

2wi)
TD(V TU− 1

2wj) =

p∑
m=1

λmzimzjm.

Since wi and wj can be rewritten as

wi =
n− 1

n
(xi − µ)− 1

n
(xj − µ)− 1

n

∑
k ̸=i,j

(xk − µ),

wj = − 1

n
(xi − µ) +

n− 1

n
(xj − µ)− 1

n

∑
k ̸=i,j

(xk − µ),

the independence of xi over i implies

E
[
wiw

T
j

]
= −n− 1

n2
Σ− n− 1

n2
Σ +

n− 2

n2
Σ = − 1

n
Σ = − 1

n− 1
U,

and thus, the first moment of wT
i wj and zimzjm can be written as

E
[
wT

i wj

]
= tr(E

[
wiw

T
j

]
) = − 1

n− 1
tr(U),

E
[
ziz

T
j

]
= E

[
V TU− 1

2wiw
T
j U

− 1
2V
]
= V TU− 1

2

(
− 1

n− 1
U

)
U− 1

2V = − 1

n− 1
I.

For the second moment of zimzjm, the formula for multivariate normal distribution implies

E
[
(zimzjm)

2
]
= V ar [zim]V ar [zjm] + 2Cov [zim, zjm]

2 = 1 + 2E [zimzjm]
2 = 1 +

2

(n− 1)2
,

V ar [zimzjm] = E
[
(zimzjm)

2
]
− (E [zimzjm])

2 = 1 +
2

(n− 1)2
− 1

(n− 1)2
= 1 +

1

(n− 1)2
.

Note that the joint normal distribution implies independence between zikzjk and zilzjl[
zi

zj

]
∼ N

(
0,

[
I − 1

n−1
I

− 1
n−1

I I

])
⇒

[
zik

zjk

][
zil

zjl

]
⇒ zikzjkzilzik, k ̸= l.
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Therefore, the variance and the second moment of the cross-terms are

V
[
wT

i wj

]
=

p∑
m=1

λ2mV [zimzjm] =

p∑
m=1

λ2m

(
1 +

1

(n− 1)2

)
=

{
1 +

1

(n− 1)2

}
tr(U2),

E
[
(wT

i wj)
2
]
=

{
1 +

1

(n− 1)2

}
tr(U2) +

1

(n− 1)2
tr(U)2.

Putting all together, we have

E
[
tr(S2)

]
=

1

(n− 1)2
E

[
n∑

i=1

(wT
i wi)

2 +
n∑

i=1,j ̸=i

(wT
i wj)

2

]

=
1

(n− 1)2
[
nE
[
(wT

i wi)
2
]
+ (n2 − n)E

[
(wT

i wj)
2
]]

=
n3

(n− 1)3
tr(U2) +

n2

(n− 1)3
tr(U)2

=
n

n− 1
tr(Σ2) +

1

n− 1
tr(Σ)2.

For the third equation, the left hand side can be written as

E [tr(Sdiag(S))] =

p∑
m=1

E
[
(Smm)

2
]
.

The summand can be decomposed into two components.

E
[
(Smm)

2
]
= E

 1

(n− 1)2

(
n∑

i=1

w2
im

)2


=
1

(n− 1)2
E

[
n∑

i=1

w4
im +

n∑
i=1,j ̸=i

w2
imw

2
jm

]

=
1

(n− 1)2

(
n∑

i=1

E
[
w4

im

]
+

n∑
i=1,j ̸=i

E
[
w2

imw
2
jm

])
.

From the normality and the first moment of the cross term

wim ∼ N

(
0,
n− 1

n
Σmm

)
, E [wimwjm] = −Σmm

n
,

we can obtain

E
[
w4

im

]
= 3

(
n− 1

n

)2

(Σmm)
2,
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E
[
w2

imw
2
jm

]
=

(
n− 1

n

)2

(Σmm)
2 + 2

(
Σmm

n

)2

=
n2 − 2n+ 3

n2
(Σmm)

2.

Substituting these expression gives

E
[
(Smm)

2
]
=
n+ 1

n− 1
(Σmm)

2.

Therefore,

E [tr(Sdiag(S))] =

p∑
m=1

E
[
(Smm)

2
]
=
n+ 1

n− 1
tr(diag(Σ)2).

The second result of the theorem follows by substituting T = diag(S) and the lemma.

ρ =
E [tr(ΣT )− tr(ΣS)− tr(ST ) + tr(S2)]

E [tr(S2)− 2tr(ST ) + tr(T 2)]

=
tr(diag(Σ)2)− tr(Σ2)− n+1

n−1
tr(diag(Σ)2) + n

n−1
tr(Σ2) + 1

n−1
tr(Σ)2

n
n−1

tr(Σ2) + 1
n−1

tr(Σ)2 − 2(n+1
n−1

)tr(diag(Σ)2) + (n+1
n−1

)tr(diag(Σ)2)

=
− 2

n−1
tr(diag(Σ)2) + 1

n−1
tr(Σ2) + 1

n−1
tr(Σ)2

n
n−1

tr(Σ2) + 1
n−1

tr(Σ)2 − (n+1
n−1

)tr(diag(Σ)2)

=
−2tr(diag(Σ)2) + tr(Σ2) + tr(Σ)2

ntr(Σ2) + tr(Σ)2 − (n+ 1)tr(diag(Σ)2)
.

7.2 Proof of theorem 2

Substituting Σj = (1− ρj)S + ρjdiag(S) and a direct calculation lead to

ρj+1 =
−2tr(diag(Σj)

2) + tr(ΣjS) + tr(Σj)
2

ntr(ΣjS) + tr(Σj)2 − (n+ 1)tr(diag(Σj)2)

=
−2tr(diag(S)2) + tr(ΣjS) + tr(S)2

ntr(ΣjS) + tr(S)2 − (n+ 1)tr(diag(S)2)

=
−2tr(diag(S)2) + tr({(1− ρj)S + ρjdiag(S)}S) + tr(S)2

ntr({(1− ρj)S + ρjdiag(S)}S) + tr(S)2 − (n+ 1)tr(diag(S)2)

=
ρj {tr(diag(S)2)− tr(S2)} − 2tr(diag(S)2) + tr(S2) + tr(S)2

ρjn {tr(diag(S)2)− tr(S2)} − (n+ 1)tr(diag(S)2) + ntr(S2) + tr(S)2

=
1− ρjϕ

1− ρjnϕ+ (n− 1)ϕ
,
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where ϕ is defined as

ϕ =
tr(S2)− tr(diag(S)2)

tr(S2) + tr(S)2 − 2tr(diag(S)2)
.

Note that ϕ ∈ [0, 1) because

tr(S2) = tr(STS) =
∑
m,k

(Smk)
2 ≥

∑
m

(Smm)
2 = tr(diag(S)2),

tr(S)2 =

(∑
m

Smm

)2

>
∑
m

(Smm)
2 = tr(diag(S)2),

where the strict inequality is due to the assumption that the sample variances are positive

Smm > 0. If ϕ = 0, (nϕ)−1 = ∞ and ρj = 1 for all j, then the statement is proved. Suppose

ϕ ∈ (0, 1). One can see ρj ∈ (0, 1) for all j by noting

ρj+1 =
1− ρjϕ

1− ρjϕ+ (n− 1)ϕ(1− ρj)
, ρ0 ∈ (0, 1).

If nϕ < 1, ρj < 1 < (nϕ)−1 for all j, so the following change of variable is well-defined

bj :=
1

ρj − 1
nϕ

⇔ ρj =
1

bj
+

1

nϕ
,

and the updating equation can be simplified to the following recursion

bj+1 =
ϕ(n− 1)

1− ϕ
bj −

nϕ

1− ϕ
⇔ bj+1 −

nϕ

nϕ− 1
=
ϕ(n− 1)

1− ϕ

(
bj −

nϕ

nϕ− 1

)
.

The statement is proved by noting

nϕ < 1 ⇔ ϕ(n− 1)

1− ϕ
< 1 ⇒ bj →

nϕ

nϕ− 1
⇒ ρj → 1.

If nϕ = 1, the same change of variable proves the statement.

bj+1 = bj −
1

1− ϕ
→ −∞ ⇒ ρj →

1

nϕ
= 1.

Finally, suppose nϕ > 1. If ρj = (nϕ)−1 for some j, ρj′ = (nϕ)−1 for all j′ ≥ j, then the

statement is proved. Otherwise, the same change of variable gives a well-defined bj

bj+1 −
nϕ

nϕ− 1
=
ϕ(n− 1)

1− ϕ

(
bj −

nϕ

nϕ− 1

)
.
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Noting

nϕ > 1 ⇔ ϕ(n− 1)

1− ϕ
> 1, ρj < 1 ⇒ bj >

nϕ

nϕ− 1
,

one can see

bj → ∞ ⇒ ρj →
1

nϕ
.

Therefore,

ρOASD = min

{
1

nϕ
, 1

}
.

7.3 Proof of theorem 3

The proof is a simpler version of Appendix 7.1 and 7.2. We first establish the following

lemma. When xi ∼ N(0,Σ) is i.i.d., the following equations hold.

E [tr(Σdiag(S))] = tr(diag(Σ)2).

E
[
tr(S2)

]
=
n+ 1

n
tr(Σ2) +

1

n
tr(Σ)2.

E [tr(Sdiag(S))] = E
[
tr(diag(S)2)

]
=
n+ 2

n
tr(diag(Σ)2).

Proof. The first equation is a direct calculation.

E [tr(Σdiag(S))] = E

[
p∑

m=1

ΣmmSmm

]
=

p∑
m=1

(Σmm)
2 = tr(diag(Σ)2).
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For the second equation,

E
[
tr(S2)

]
= E

tr
{ 1

n

n∑
i=1

xix
T
i

}2


=
1

n2
tr

E
( n∑

i=1

xix
T
i

)2


=
1

n2
tr

V ar [ n∑
i=1

xix
T
i

]
+

{
E

[
n∑

i=1

xix
T
i

]}2


=
ntr
(
E
[
(xix

T
i )

2
]
− E

[
xix

T
i

]2)
+ n2tr

(
E
[
xix

T
i

]2)
n2

=
ntr
(
E
[
(xix

T
i )

2
])

+ (n2 − n)tr(Σ2)

n2
.

The first term can be calculated using diagonalization of Σ = V TDV where V V T = I.

tr
(
E
[
(xix

T
i )

2
])

= E
[
tr(xix

T
i xix

T
i )
]
= E

[
(xTi xi)

2
]
= V

[
xTi xi

]
+
(
E
[
xTi xi

])2
.

The integrand can be transformed into

xTi xi =
(
V Σ− 1

2xi

)T
D
(
V Σ− 1

2xi

)
=

p∑
m=1

λmz
2
im, zi := V Σ− 1

2xi ∼ N(0, I).

Using the independence of zim across m and the fourth moment of zim under normality,

V
[
xTi xi

]
=

p∑
m=1

λ2mV
[
z2im
]
=
∑
m=1

λ2m

{
E
[
z4im
]
− E

[
z2im
]2}

= 2

p∑
m=1

λ2m = 2tr
(
Σ2
)
.

Thus

tr
(
E
[
(xix

T
i )

2
])

= 2tr(Σ2) + tr(Σ)2,

and

E
[
tr(S2)

]
=

2ntr(Σ2) + ntr(Σ)2 + (n2 − n)tr(Σ2)

n2
=
n+ 1

n
tr(Σ2) +

1

n
tr(Σ)2.

For the third equation,

E [tr(Sdiag(S))] = E
[
tr(diag(S)2)

]
=

p∑
m=1

E
[
(Smm)

2
]
.
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The result follows by noting

E
[
(Smm)

2
]
= E

( 1

n

n∑
i=1

x2im

)2


= V

[
1

n

n∑
i=1

x2im

]
+

(
E

[
1

n

n∑
i=1

x2im

])2

=
1

n
V
[
x2im
]
+ (Σmm)

2

=
1

n

(
E
[
x4im
]
− E

[
x2im
]2)

+ (Σmm)
2

=

(
2

n
+ 1

)
(Σmm)

2.

Substituting T = diag(S) and the equations in the above lemma gives

ρ =
E [tr(ΣT )− tr(ΣS)− tr(ST ) + tr(S2)]

E [tr(S2)− 2tr(ST ) + tr(T 2)]

=
tr(diag(Σ)2)− tr(Σ2)− n+2

n
tr(diag(Σ)2) + n+1

n
tr(Σ2) + 1

n
tr(Σ)2

n+1
n
tr(Σ2) + 1

n
tr(Σ)2 − n+2

n
tr(diag(Σ)2)

=
− 2

n
tr(diag(Σ)2) + 1

n
tr(Σ2) + 1

n
tr(Σ)2

n+1
n
tr(Σ2) + 1

n
tr(Σ)2 − n+2

n
tr(diag(Σ)2)

=
−2tr(diag(Σ)2) + tr(Σ2) + tr(Σ)2

(n+ 1)tr(Σ2) + tr(Σ)2 − (n+ 2)tr(diag(Σ)2)
.

The iteration is specified by

ρj+1 =
−2tr(diag(Σj)

2) + tr(ΣjS) + tr(Σj)
2

(n+ 1)tr(ΣjS) + tr(Σj)2 − (n+ 2)tr(diag(Σj)2)

=
(1− ρj)tr(S

2) + ρjtr(Sdiag(S))− 2tr(diag(S)2) + tr(S)2

(n+ 1) {(1− ρj)tr(S2) + ρjtr(Sdiag(S))}+ tr(S)2 − (n+ 1)tr(diag(S)2)

=
tr(S2) + tr(S)2 − 2tr(diag(S)2)− {tr(S2)− tr(Sdiag(S))}ρj

(n+ 1)tr(S2) + tr(S)2 − (n+ 1)tr(diag(S)2)− (n+ 1) {tr(S2)− tr(Sdiag(S))} ρj

=
1− ϕρj

1 + nϕ− (n+ 1)ϕρj

where the parameter ϕ is

ϕ =
tr(S2)− tr(diag(S)2)

tr(S2) + tr(S)2 − 2tr(diag(S)2)
.
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Note that the updating equation is identical to the one in Appendix 7.2, except that n is

replaced by n+ 1. Thus, following the same argument,

ρOASD = min

{
1

(n+ 1)ϕ
, 1

}
.

7.4 Proof of theorem 4

Note from 13,

S̃ (θ, α) = (1− θ)S + θ (αTOASD + (1− α)TOAS)

Similar to the result 5 in Theorem 1, by minimizing the MSE criterion in 14, we can get the

oracle shrinkage parameter θOB and αOB. (To simplify notation, use < M,N > to denote

tr(MTN):

θOB =
E [< Σ− S, αOBTOASD + (1− αOB)TOAS − S >]

E
[
∥S − (αOBTOASD + (1− αOB)TOAS)∥2

]
αOB = 1− 1

θOB

E [< S − Σ, TOASD − TOAS >]

E
[
∥TOASD − TOAS∥2

]
Substituting the equation for αOB into the equation for θOB gives

θOB =
E [< S − Σ, S − TOASD) >]

E [< S − TOAS, S − TOASD) >]

Using the lemma derived in the proof of Theorem 1, we have

θOB =
E [< S − Σ, S − TOASD) >]

E [< S − TOAS, S − TOASD >]

=

tr(Σ)2+tr(Σ2)−2tr(diag(Σ)2)
n−1

n
n−1

tr(Σ2) + 1
n−1

tr(Σ)2 − n+1
n−1

tr(diag(Σ)2)

=
tr(Σ)2 + tr(Σ2)− 2tr(diag(Σ)2)

ntr(Σ2) + tr(Σ)2 − (n+ 1)tr(diag(Σ)2)

which is the same as the optimal value for ρOD when the target is only diag(S) in Theorem

6. To simplify αOB, we need to use the lemma derived in Theorem 6 as well as an additional

lemma, which we derive below. When xi ∼ N(µ,Σ) is i.i.d., the following equation holds

E
[
tr(S)2

]
=

2

n− 1
tr(Σ2) + tr(Σ)2.
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Proof. Following the notation for proof of Theorem 6, we have

E
[
tr(S)2

]
=

1

(n− 1)2
E

{∑
i

tr(wiw
T
i )

}2


=
1

(n− 1)2
E

{∑
i

wT
i wi

}2


=
1

(n− 1)2

{
E

[∑
i

(wT
i wi)

2

]
+ E

[∑
i ̸=j

wT
i wiw

T
j wj

]}
.

The first quantity in the curly bracket is proven in Theorem 6 as

E
[
(wT

i wi)
2
]
= 2tr(U2) + tr(U)2.

For the second quantity, we first use the equation wT
i wi =

∑p
m=1 λmz

2
im to derive the following

E
[
wT

i wiw
T
j wj

]
= E

[
p∑

m=1

p∑
k=1

λmλkz
2
imz

2
jk

]

=

p∑
m=1

p∑
k=1

λmλkE
[
z2imz

2
jk

]
From the second moment of the multivariate normal distribution and that E

[
ziz

T
j

]
= − 1

n−1
I,

we can get the second moment of zimzjk

E
[
z2imz

2
jk

]
= V ar [zim]V ar [zjk] + 2Cov [zim, zjk]

2

=

1 + 2
(n−1)2

, if m = k

1, if m ̸= k

Therefore we have

p∑
m=1

p∑
k=1

λmλkE
[
z2imz

2
jk

]
=

p∑
m=1

λ2m

[
1 +

2

(n− 1)2

]
+

p∑
m ̸=k

λmλk

=

[
1 +

2

(n− 1)2

]
tr(U2) +

[
tr(U)2 − tr(U2)

]
=

2

(n− 1)2
tr(U2) + tr(U)2
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When we sum over all i ̸= j, we get the second quantity as

E

[∑
i ̸=j

wT
i wiw

T
j wj

]
= (n2 − n)

[
2

(n− 1)2
tr(U2) + tr(U)2

]

Putting both quantities together

E
[
tr(S)2

]
=

1

(n− 1)2

{
E

[∑
i

(wT
i wi)

2

]
+ E

[∑
i ̸=j

wT
i wiw

T
j wj

]}

=
1

(n− 1)2

{
2ntr(U2) + ntr(U)2 + (n2 − n)

[
2

(n− 1)2
tr(U2) + tr(U)2

]}
=

n2

(n− 1)2

{
2

n− 1
tr(U2) + tr(U)2

}
Now we use the definition U = n−1

n
Σ to get

E
[
tr(S)2

]
=

2

n− 1
tr(Σ2) + tr(Σ)2

Using the lemma from Theorem 6 and the one just derived, αO can be simplified to

αOB = 1− 1

θOB

E [< S − Σ, TOASD − TOAS >]

E
[
∥TOASD − TOAS∥2

]
= 1− 1

θOB

2
n−1

tr(diag(Σ)2)− 2
(n−1)p

tr(Σ2)
n+1
n−1

tr(diag(Σ)2)− 2
(n−1)p

tr(Σ2)− 1
p
tr(Σ)2

= 1− 1

θOB

2ptr(diag(Σ)2)− 2tr(Σ2)

p(n+ 1)tr(diag(Σ)2)− 2tr(Σ2)− (n− 1)tr(Σ)2

7.5 Proof of theorem 5

To simplify notation, we write θOASB as θ in this subsection and define the following variables

A =
tr(S)2

p
B = tr(S2)− tr(diag(S)2) C = tr(diag(S)2)− tr(S)2

p

Note that by Cauchy Schwartz and properties of the trace of a matrix, we have the following

inequalities:

tr(S)2 ≥ tr(S2) > tr(diag(S)2) ≥ tr(S)2

p
≥ tr(S2)

p
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where the first and last inequality would be strict unless all the sample correlations are 1.

The second inequality is strict because we assume that all the sample variances are positive.

The third inequality is strict unless all sample variances are equal. Therefore, A and B

defined above are positive and C is non-negative and only 0 when all the sample variances

are equal. Substituting Σj = (1 − θOASB)S + θOASB(αjTOASD + (1 − αj)TOAS) into the

iteration and a direct calculation lead to

αj+1 = 1− 1

θ

2(ptr(diag(S)2)− tr(S2)) + 2θαj(p− 1)C + 2θ(B − (p− 1)C)

2(ptr(diag(S)2)− tr(S2)) + (n− 1)pC + θαj(np+ p− 2)C + θ((2− np− p)C + 2B)

= 1− 1

θ

1 + τ1θαj + τ2θ

1 + τ3 + (τ1 + τ3)θαj + (τ2 − τ3)θ
,

where we defined

τ1 =
(p− 1)C

ptr(diag(S)2)− tr(S2)
=

(p− 1)C

(p− 1)A+ (p− 1)C −B

τ2 =
B − (p− 1)C

ptr(diag(S)2)− tr(S2)
=

B − (p− 1)C

(p− 1)A+ (p− 1)C −B

τ3 =
(n− 1)pC

2(ptr(diag(S)2)− tr(S2))
=

(n− 1)pC

2[(p− 1)A+ (p− 1)C −B]

assuming all quantities are well-defined. In the case where ptr(diag(S)2) = tr(S2), we have

αj = 1− 1
θ
for all j and the theorem is proved. If C = 0 thus τ1 and τ3 are both 0, we again

have αj = 1− 1
θ
for all j and the theorem is proved. If now τ1 and τ3 are both non-zero, but

if αj =
θ(τ3−τ2)−1
θ(τ1+τ3)

at any step of the iteration process, substituting it into the iteration results

in αj′ =
θ(τ3−τ2)−1
θ(τ1+τ3)

for all j′ > j and the theorem is proved. For the general case where τ1,

τ2, and τ3 are all well-defined, C ̸= 0, and αj ̸= θ(τ3−τ2)−1
θ(τ1+τ3)

for all j, we can do the following

change of variable

cj :=
1

αj − θ(τ3−τ2)−1
θ(τ1+τ3)

⇔ αj =
1

cj
+
θ(τ3 − τ2)− 1

θ(τ1 + τ3)

The updating equation now becomes the following recursion

cj+1 =
τ3

(τ1 + τ2)θ + 1− τ1
cj +

(τ1 + τ3)θ

(τ1 + τ2)θ + 1− τ1

and we can get the limit of this linear dynamic system∣∣∣∣ τ3
(τ1 + τ2)θ + 1− τ1

∣∣∣∣ < 1 ⇒ cj →
(τ1 + τ3)θ

(τ1 + τ2)θ + 1− τ1 − τ3
⇔ αj →

θ − 1

θ
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∣∣∣∣ τ3
(τ1 + τ2)θ + 1− τ1

∣∣∣∣ ≥ 1 ⇒ |cj| → ∞ ⇔ αj →
θ(τ3 − τ2)− 1

θ(τ1 + τ3)

Therefore, we have the following converging limit

αOASB =


θ − 1

θ
, if

∣∣∣∣ τ3
(τ1 + τ2)θ + 1− τ1

∣∣∣∣ < 1

θ(τ3 − τ2)− 1

θ(τ1 + τ3)
, if

∣∣∣∣ τ3
(τ1 + τ2)θ + 1− τ1

∣∣∣∣ ≥ 1

Because θ = ρOASD, it follows that θ ∈ (0, 1]. For αOASB, we have if∣∣∣∣ τ3
(τ1 + τ2)θ + 1− τ1

∣∣∣∣ ≥ 1

then we have

αOASB − θ − 1

θ
=
θ(τ3 − τ2)− 1

θ(τ1 + τ3)
− θ − 1

θ
=
τ3 + τ1 − 1− θ(τ1 + τ2)

θ(τ1 + τ3)
≥ 0

Notice that τ1 + τ2 > 0 and thus

θ(τ3 − τ2)− 1

θ(τ1 + τ3)
− 1 =

−θ(τ1 + τ2)− 1

θ(τ1 + τ3)
< 0

Similar results holds trivially for the case when αOASB = θ−1
θ
. Therefore αOASB ∈ [1− 1

θ
, 1)

Despite the fact that αOASB is no longer restricted to be between 0 and 1, the property of

the final estimator being positive definite still holds because of the following claim For any

nonzero vector x and any weighting scaler α, the linear combination

αdiag(S) + (1− α)
tr(S)

p

is positive definite and therefore any convex combination of the above quantity with the

sample covariance matrix results in a positive definite covariance matrix estimator. Proof.

αxTdiag(S)x+ (1− α)xT
tr(S)

p
x ≥ αλmin(diag(S))x

Tx+ (1− α)λmin(S)x
Tx

≥ λmin(S)x
Tx > 0

where the second to last inequality follows from the property of diag(S) derived in Appendix

7.7 and the last inequality follows from our assumption that the sample variances are all

positive.
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7.6 Proof of theorem 6

The proof is a simpler version of Appendix 7.4 and 7.5. The proof is the same as Appendix

7.4 until we get the following expressions for θOB and αOB

θOB =
E [< S − Σ, S − TOASD) >]

E [< S − TOAS, S − TOASD) >]

αOB = 1− 1

θOB

E [< S − Σ, TOASD − TOAS >]

E
[
∥TOASD − TOAS∥2

]
In order to evaluate the expectations, we make use of the lemmas proved in Appendix 7.3

and a simpler version of the additional lemma we proved in Appendix 16.

When xi ∼ N(0,Σ) is i.i.d., the following equation holds

E
[
tr(S)2

]
=

2

n
tr(Σ2) + tr(Σ)2.

Proof.

E
[
tr(S)2

]
=

1

n2
E

{∑
i

tr(xix
T
i )

}2


=
1

n2
V

[∑
i

tr(xix
T
i )

]
+

1

n2

{
E

[∑
i

tr(xix
T
i )

]}2

=
1

n
V
[
tr(xix

T
i )
]
+ tr(Σ)2

=
1

n
V
[
xTi xi

]
+ tr(Σ)2

=
2

n
tr(Σ2) + tr(Σ)2

where the last equality used the expression for V
[
xTi xi

]
we derived in Appendix 12 Now

using the lemma in Appendix 12 and the additional one derived above, we can simplify θOB

to be

θOB =
E [< S − Σ, S − TOASD) >]

E [< S − TOAS, S − TOASD >]

=
tr(Σ)2 + tr(Σ2)− 2tr(diag(Σ)2)

(n+ 1)tr(Σ2) + tr(Σ)2 − (n+ 2)tr(diag(Σ)2)
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which is the same as the optimal value for ρOD when the target is only diag(S) in Theorem

3 αOB therefore simplifies to

αOB = 1− 1

θOB

2
n
tr(diag(Σ)2)− 2

np
tr(Σ2)

n+2
n
tr(diag(Σ)2)− 2

np
tr(Σ2)− 1

p
tr(Σ)2

= 1− 1

θOB

2ptr(diag(Σ)2)− 2tr(Σ2)

p(n+ 2)tr(diag(Σ)2)− 2tr(Σ2)− ntr(Σ)2

Note again θOB is the same as ρOD under the known mean case so we take θOASB = ρOASD.

For αOASB, we use the limit of the following iteration to approximate the oracle

αj+1 = 1− 1

θOASB

2ptr(diag(Σj)diag(S))− 2tr(ΣjS)

p(n+ 2)tr(diag(Σj)diag(S))− 2tr(ΣjS)− ntr(Σj)2

Notice that this updating equation is identical to 18, except that n is replaced by n + 1.

Thus, following the same argument, we get

αOASB =


θOASB − 1

θOASB

, if

∣∣∣∣ τ3
(τ1 + τ2)θOASB + 1− τ1

∣∣∣∣ < 1

θOASB(τ3 − τ2)− 1

θOASB(τ1 + τ3)
, if

∣∣∣∣ τ3
(τ1 + τ2)θOASB + 1− τ1

∣∣∣∣ ≥ 1

where we used the θOASB in 12, τ3 is adjusted to be

τ3 =
np
[
tr(diag(S)2)− tr(S)2

p

]
2(ptr(diag(S)2)− tr(S2))

and τ1 and τ2 are as defined in Appendix 7.5 since they don’t involve n.

7.7 Proof of Comment 1

Given S is a real symmetric matrix, we can use Theorem 2.1 of [Million, 2007] to get the

following results for diag(S):

diag(S)× 1 =


s11

s22

...

spp

 = Γ ◦ Γ


λ1(S)

λ2(S)

...

λp(S)


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where Γ is the eigenvector matrix of S with each column being an eigenvector and 1 is a

vector of ones. Since the diagonal entries of diag(S) are its eigenvalues, we consider the

dispersion of


s11

s22

...

spp

 relative to that of


λ1(S)

λ2(S)

...

λp(S)

. From the orthogonality of Γ, we know

(Γ ◦ Γ)× 1 = 1

We also know that all entries in Γ ◦ Γ are nonnegative. Therefore, all entries in Γ ◦ Γ are

between 0 and 1 and each row sums to be 1. This means that any sii is a linear convex

combination of λ1(S), ...λp(S).This leads to the following:

λmin(S) ≤ λmin(diag(S)) ≤ λmax(diag(S)) ≤ λmax(S)

The first equality would only hold if the row in Γ ◦ Γ that corresponds to λmin(S) happens

to put all all the weight on this value and similarly for the last equality. Now since we have

λmax(A+B) = sup
|v|=1

vT (A+B)v ≤ λmax(A) + λmax(B)

λmin(A+B) = inf
|v|=1

vT (A+B)v ≥ λmin(A) + λmin(B)

where the equality only holds when all A + B, A, B share the same eigenvector that cor-

responds to the largest/smallest eigenvalues. Therefore, in general (assuming that we are

not under the special cases mentioned above), for a combined estimator in the form of

Sc = (1− ρ)S + ρdiag(S), we would have

λmin(Sc) > (1− ρ)λmin(S) + ρλmin(diag(S)) > λmin(S)

Similarly, we have

λmax(Sc) < (1− ρ)λmax(S) + ρλmax(diag(S)) < λmax(S)

Therefore, Sc is a better conditioned estimator compared to S.
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